BOPLA Enclosures

Information for RFI protection.

more than 90% reduction

of the emission of your electronics

of the ingress from the environment for the protection of your electronics
EMC - Screening by BOPLA

This brochure is meant to help you choose the best possible EMC protection for your electronic equipment.

Some of the graphs in the following diagrams show strong fluctuations due to resonances occurring. These resonances will disappear, change, or weaken as the position of source of interference is shifts slightly.

The screening attenuation values received from standard empty enclosures are not conducted to fully assembled electronic equipment.
Contents

<table>
<thead>
<tr>
<th>1. Technical Information</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. CombiCard II</td>
<td></td>
</tr>
<tr>
<td>2.1. Comparative graphs:</td>
<td></td>
</tr>
<tr>
<td>- conductive copper laquer</td>
<td>8</td>
</tr>
<tr>
<td>- galvanized</td>
<td></td>
</tr>
<tr>
<td>- aluminized</td>
<td></td>
</tr>
<tr>
<td>without ventilation, with EMC seal</td>
<td></td>
</tr>
<tr>
<td>2.2. Comparative graphs:</td>
<td></td>
</tr>
<tr>
<td>- conductive copper laquer</td>
<td>9</td>
</tr>
<tr>
<td>- galvanized</td>
<td></td>
</tr>
<tr>
<td>- aluminized</td>
<td></td>
</tr>
<tr>
<td>with ventilation, with EMC seal</td>
<td></td>
</tr>
<tr>
<td>2.3. Comparative graphs:</td>
<td></td>
</tr>
<tr>
<td>- conductive copper laquer</td>
<td>10</td>
</tr>
<tr>
<td>- galvanized</td>
<td></td>
</tr>
<tr>
<td>- aluminized</td>
<td></td>
</tr>
<tr>
<td>with EMC seal</td>
<td></td>
</tr>
<tr>
<td>2.4. Comparative graphs:</td>
<td></td>
</tr>
<tr>
<td>- conductive copper laquer</td>
<td>11</td>
</tr>
<tr>
<td>- galvanized</td>
<td></td>
</tr>
<tr>
<td>- aluminized</td>
<td></td>
</tr>
<tr>
<td>with standard seal</td>
<td></td>
</tr>
<tr>
<td>2.5. Comparative graphs:</td>
<td></td>
</tr>
<tr>
<td>- chromated front plate</td>
<td>12</td>
</tr>
<tr>
<td>- chromated front plate + EMC contact spring</td>
<td></td>
</tr>
<tr>
<td>measured on an aluminized enclosure with EMC - seal and opened front lid</td>
<td></td>
</tr>
<tr>
<td>2.6. Comparative graphs:</td>
<td></td>
</tr>
<tr>
<td>- screened enclosure + chromated front plate</td>
<td>13</td>
</tr>
<tr>
<td>- screened enclosure + chromated front plate + EMC contact</td>
<td></td>
</tr>
<tr>
<td>2.7. Comparative graphs:</td>
<td></td>
</tr>
<tr>
<td>- BGT 7000.Pi/AD</td>
<td>14</td>
</tr>
<tr>
<td>- BGT 7000.Pi/AD chromated</td>
<td></td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>3.</th>
<th>Ultramas</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Comparative graphs:</td>
</tr>
<tr>
<td></td>
<td>- conductive copper laquer</td>
</tr>
<tr>
<td></td>
<td>- aluminized</td>
</tr>
<tr>
<td></td>
<td>- conductive copper laquer with EMC-Seal and FAE cut to fit EMC-Seal</td>
</tr>
<tr>
<td></td>
<td>measured on an UM 32009</td>
</tr>
<tr>
<td>3.2</td>
<td>Comparative graphs:</td>
</tr>
<tr>
<td></td>
<td>- UM 32009</td>
</tr>
<tr>
<td></td>
<td>- UM 52011</td>
</tr>
<tr>
<td></td>
<td>- UM 62009 RG</td>
</tr>
<tr>
<td></td>
<td>with conductive copper laquer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.</th>
<th>RCP</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5.</th>
<th>CombiNorm</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Comparative graphs:</td>
</tr>
<tr>
<td></td>
<td>- conductive copper laquer</td>
</tr>
<tr>
<td></td>
<td>- galvanized</td>
</tr>
<tr>
<td></td>
<td>- metal filled plastic</td>
</tr>
<tr>
<td></td>
<td>with horizontal PCB's</td>
</tr>
<tr>
<td>5.2</td>
<td>Comparative graphs:</td>
</tr>
<tr>
<td></td>
<td>- conductive copper laquer</td>
</tr>
<tr>
<td></td>
<td>- galvanized</td>
</tr>
<tr>
<td></td>
<td>- metal filled plastic</td>
</tr>
<tr>
<td></td>
<td>with vertical PCB's</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6.</th>
<th>Interzoll - Plus</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>7.</th>
<th>Euromas</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>8.</th>
<th>Elegant</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>9.</th>
<th>NGS</th>
</tr>
</thead>
</table>
The screening effect (SE) is defined as the ratio of the field intensity before/after the shield.

<table>
<thead>
<tr>
<th>SE (dB)</th>
<th>Screen factor</th>
<th>Attenuation in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>10 : 1</td>
<td>90,0</td>
</tr>
<tr>
<td>40</td>
<td>100 : 1</td>
<td>99,0</td>
</tr>
<tr>
<td>60</td>
<td>1000 : 1</td>
<td>99,9</td>
</tr>
<tr>
<td>80</td>
<td>10000 : 1</td>
<td>99,99</td>
</tr>
<tr>
<td>100</td>
<td>100000 : 1</td>
<td>99,999</td>
</tr>
</tbody>
</table>

The law on electromagnetic compatibility of 9 November 1992 requires all manufacturers of electrical and electronic products to prove and ensure that their equipment meets the EMC regulations. The purpose of this is:

- to prevent the equipment or system from emitting impermissible levels of radiated noise.
- to prevent the malfunctioning of a product due to electromagnetic fields from outside

To prove that equipment is EMC standardised, the CE sign is to be used in all member states of the European Community. Manufacturers have been given a transition period, starting on 1st January 1996, to comply with these regulations. This period is rather short, and it is causing considerable problems for many manufacturers, particularly with existing products. In the past, little attention has been paid to EMC requirements in the design stage, although here lie the best opportunities.

A study on EMC as a cost factor has shown the following:

<table>
<thead>
<tr>
<th>EMC measures</th>
<th>Cost factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the design stage</td>
<td>1</td>
</tr>
<tr>
<td>During series production</td>
<td>100</td>
</tr>
<tr>
<td>While in use</td>
<td>1000</td>
</tr>
</tbody>
</table>

For the choice of an enclosure this means that an electrical component subject to the EMC regulations can be installed in any desired enclosure without any extra costs in 90% of cases. So to achieve screening, the essential advantages of plastic enclosures need not to be sacrificed.

- an elegant design
- considerable price savings
- lightness and versatility
Screening with plastic enclosures

It is generally easy to screen plastic enclosures effectively as well. You can still benefit from the advantages of a plastic enclosure.

At present, screening is achieved by applying a metal coating on the inside or outside of the enclosure. Metal coatings on plastics can be galvanized, vaporized, or enamelled. We offer the following standard procedures:

Screening by aluminization

Aluminization is performed in high-vacuum machinery. We provide a standard coating thickness of at least 2.5 µm. A greater thickness is, however, always possible, if required, depending on the enclosure material.

The aluminium coating adheres evenly and well on almost all plastics and remains stable for long periods.

The mechanical properties of the plastic are not altered by vaporization, and no brightness or cracking will result. When vaporizing, areas that should not or may not be coated must be covered or masked.

Screening by enamelling

a) with copper
b) with copper metallised with silver

Coating with EMC conductive lacquer applies a 50 µm thick conductive layer (copper) respectively a 25 µm thick layer (silver metallised copper) to the enclosure parts.

Prior to coating, the enclosure can be covered or masked according to our specification or at customer’s request, to keep those areas that are not to be coated free of lacquer.

Screening with aluminium enclosures

Aluminium enclosures may under certain circumstances in themselves offer some EMC attenuation owing to the material.

However, the joints (tongue and groove) need to be fitted with the appropriate seals for optimal EMC performance, and it must be remembered to bridge the lacquer coating.

This can be done with appropriate seals or by removing the lacquer coating. The measures involved must be determined while clarifying your requirements.

Coating the plastic enclosure achieves a good degree of attenuation. Should the degree of attenuation still give inadequate protection, the use of conductive seals will enhance shielding.

In addition to the above screening methods, enclosures can be made of metal-filled plastics. However, due to high material costs and the uncertain screening performance these materials are only of interest in some cases.
Screening of aluminium profiles and aluminium plates

Chromating the surface, as against anodizing it, gives the surface excellent conductability that is virtually equivalent to the original conductability of aluminium. By chromating, aluminium’s natural oxide film is converted into a very thin an-organic layer. Compared with the anodized layer, the chromated surface is more sensitive. Aluminium plates offer the option of chromating on one side, so that the side exposed to the operator has an anodized layer which is less sensitive.

Screening of display windows

This technique involves applying a conductive transparent foil to the display window. To produce a conductive connection to the enclosure’s shield, terminal lugs can be attached to the foil.

Screening of cable ducts

Unshielded cable ducts on EMC enclosures result in a substantial sacrifice of screen attenuation. To prevent this happening, the end of the shielded cable must be inserted into an EMC cable gland. Ensure the contact is good between the cable gland and the enclosure screen. To obtain a ground connection, a conductive shim with grounding clips can be inserted between cable gland and enclosure screen.

However, if it is not possible to obtain screening by using metallic connections and shielded cables, use a duct designed for the wavelength. Duct apertures smaller than 1/30th of the wavelength have an extremely small influence on the screening effect. With higher field intensity values, the length of the aperture should not be greater than 1/30th of the wavelength.

Screening of key pads

There are two options available:

- Laminating the polyester foil, coated with aluminium or copper, into the keyboard by sandwiching it under the front pane foil. To grounding to the enclosure wall or mother board, use foil with at least one attached terminal lug.

- The other alternative is to integrate foil, coated by the screen printing technique, into the keyboard. With this option, conductive silver is printed on the polyester foil, to cover its surface fully or in a lattice-shaped pattern. In this case, the foil should be grounded directly to the PCB via the plug and socket connection.

Other EMC measures

EMC seals

In any other cases, where the screening techniques already described prove to be inadequate, contact seals can be used to enhance screening performance. If necessary, we will suggest or specify these special seals to suit your requirements and type of enclosure.

Interior encasing

A further effective screening measure is offered by the possibility of surrounding components, sub-assemblies or entire electronic systems that are sensitive to radiation interference, with a metallic casing inside the enclosure. In addition to the measures already described, a further enhancement of the screening performance can be achieved with interior encapsulation.

For several years, BOPLA has worked with competent EMC suppliers and institutes that will also assist you with EMC problems, carry out measurements and tests, or issue certificates for you. We shall be pleased to give you addresses and the names of contact persons.
2.1. CombiCard II with EMC seal without ventilation

Combination: FR 7000 + BC 7000-1,5 + RD 7000 K

Measurement of screening attenuation

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Conductive copper lacquer</th>
<th>Galvanized</th>
<th>Aluminized</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>99.0</td>
<td>99.9</td>
<td>99.0</td>
</tr>
<tr>
<td>100</td>
<td>99.9</td>
<td>99.9</td>
<td>99.9</td>
</tr>
<tr>
<td>1000</td>
<td>99.9</td>
<td>99.9</td>
<td>99.9</td>
</tr>
</tbody>
</table>
Measurement of screening attenuation

2.2. CombiCard II with EMC seal with ventilation

Combination: FR 7000 + BC 7000 L-1,5 + RD 7000 K

- 9 -
2.3. CombiCard II with EMC seal without ventilation

Combination: FO 7000 + BC 7000-1.5 + RD 7000 K

Measurement of screening attenuation

- Conductive copper laquer
- Galvanized
- Aluminized

Screening attenuation (%)

[Graph showing screening attenuation over frequency (MHz)]
2.4. CombiCard II with standard seal without ventilation

Combination: FO 7000 + BC 7000-1,5 + RD 7000 K

Measurement of screening attenuation

Screening attenuation (%)

Screening attenuation (db)

Frequency (MHz)

conductive copper lacquer

galvanized

aluminized

-11-
2.5. CombiCard II – aluminized with EMC seal and front plate (open front lid)
Combination: (FD 7000 G) + FP 7000 + BC 7000-1,5 + RD 7000 K

Measurement of screening attenuation

- 12 -
2.6. CombiCard II - Standard enclosure with screened enclosure + front plate

Combination: FD 7000 G + Schirmgehäuse + FP 7000 + BC 7000-1,5 + RD 7000 K

Measurement of screening attenuation

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Screening attenuation (%)</th>
<th>Screening attenuation (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>99.9</td>
<td>-13</td>
</tr>
<tr>
<td>100</td>
<td>99.9</td>
<td>-13</td>
</tr>
<tr>
<td>1000</td>
<td>99.9</td>
<td>-13</td>
</tr>
</tbody>
</table>

- 13 -

A Phoenix Mecan Company
2.7. CombiCard II Standard enclosure with BGT 7000.Pi/AD
Combination: FD 7000 G + BGT 7000.Pi/AD + BC 7000-1,5 + RD 7000 K

Measurement of screening attenuation

Frequency (MHz)

Screening attenuation (%)

Screening attenuation (db)

BGT 7000.Pi/AD
BGT 7000.Pi/AD chromated
Measurement of screening attenuation

3.1. Ultramas 32009 with standard FAE

- Conductive copper laquer
- Aluminized
- Conductive copper laquer with EMC-Seal and FAE cut to fit EMC-Seal

Screening attenuation (%)

Frequency (MHz)

99.999
99.99
99.9
99.0
90.0

Screening attenuation (db)
3.2. Ultramas with conductive copper laquer and standard FAE

Measurement of screening attenuation

Screening attenuation (%)

Screening attenuation (db)

Frequency (MHz)

UM 32009

UM 52011

UM 62009 RG

3.2.1. Ultramas with conductive copper laquer and standard FAE
4.1. RCP 2000 with conductive copper laquer

Measurement of screening attenuation

Screening attenuation (%)

Screening attenuation (db)

Frequency (MHz)

- 17 -
5.1. CombiNorm with horizontal PCB with AK 700/V

Measurement of screening attenuation

- 18 -
5.2. CombiNorm with vertical PCB with AK 700/ H

Measurement of screening attenuation

- 19 -
Measurement of screening attenuation

6.1. Interzoll-Plus

Frequency (MHz)

Screening attenuation (%)

Screening attenuation (db)

- 20 -
7.1. Euromas with conductive copper laquer

Measurement of screening attenuation

![Graph showing screening attenuation with and without EMC-seal versus frequency. The graph compares the percentage and decibel (dB) values for both conditions.]

- with EMC-seal
- with standard seal

7.1. Euromas with conductive copper laquer
8.1. Elegant-enclosure

Measurement of screening attenuation

Screening attenuation (%)

Screening attenuation (db)

10 100 1000

Frequency (MHz)

EG 2070 conductive copper lacquer
EG 2070 FAE - conductive copper lacquer
EG 2070 aluminized

8.1. Elegant-enclosure
Measurement of screening attenuation

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Screening attenuation (%)</th>
<th>Screening attenuation (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>99,9</td>
<td>60</td>
</tr>
<tr>
<td>100</td>
<td>99,0</td>
<td>40</td>
</tr>
<tr>
<td>1000</td>
<td>90,0</td>
<td>20</td>
</tr>
</tbody>
</table>

9.1. NGS 9616 with standard frontplate

conductive copper lacquer
ELECTRODAG 6050
BOPLA sales organisation
Germany
(as of 1.1.2012)

Field staff

<table>
<thead>
<tr>
<th>Field staff</th>
<th>Sales area</th>
<th>Office staff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roland Heisig</td>
<td>Sales area East</td>
<td>Birgit Schulte-Beckmann</td>
</tr>
<tr>
<td>Mobile: +49 173 / 7276471</td>
<td>Postcode 01-06, 09-17, 39</td>
<td>Tel.: +49 5223 / 969-140</td>
</tr>
<tr>
<td>Tel.: +49 3327 / 565636</td>
<td>Fax: +49 3327 / 565637</td>
<td>Fax: +49 5223 / 969-130</td>
</tr>
<tr>
<td>Fax: +49 3327 / 565637</td>
<td>rheisig@bopla.de</td>
<td>bschulte@bopla.de</td>
</tr>
<tr>
<td>Jürgen Stapelfeld</td>
<td>Sales area North</td>
<td>Heike Kretschmer</td>
</tr>
<tr>
<td>Mobile: +49 173 / 7276470</td>
<td>Postcode 18-25, 27-29</td>
<td>Tel.: +49 5223 / 969-149</td>
</tr>
<tr>
<td>Tel.: +49 4154 / 791968</td>
<td>Fax: +49 4154 / 7743</td>
<td>Fax: +49 5223 / 969-130</td>
</tr>
<tr>
<td>Fax: +49 4154 / 7743</td>
<td>jstapelfeld@bopla.de</td>
<td>hkretschmer@bopla.de</td>
</tr>
<tr>
<td>ELTOP GmbH · Jörg Oppermann</td>
<td>Sales area Middle</td>
<td>Raphael Tiemann</td>
</tr>
<tr>
<td>Robert-Bosch-Str. 8 · 30989 Gehrdn</td>
<td>Postcode 30-32, 34, 36-38, 99</td>
<td>Tel.: +49 5223 / 969-139</td>
</tr>
<tr>
<td>Mobile: +49 172 / 5101231</td>
<td>Fax: +49 5108 / 927320</td>
<td>Fax: +49 5223 / 969-130</td>
</tr>
<tr>
<td>Tel.: +49 5108 / 927320</td>
<td>Fax: +49 5108 / 927321</td>
<td>rtiemann@bopla.de</td>
</tr>
<tr>
<td>Fax: +49 5108 / 927321</td>
<td>eltop@eltop.de</td>
<td></td>
</tr>
<tr>
<td>Thomas Geißler</td>
<td>Sales area West</td>
<td>Anja Werries</td>
</tr>
<tr>
<td>Mobile: +49 173 / 7276480</td>
<td>Postcode 40-42, 46, 47, 50-52, 58</td>
<td>Tel.: +49 5223 / 969-151</td>
</tr>
<tr>
<td>Tel.: +49 2162 / 1034308</td>
<td>Fax: +49 2162 / 1033679</td>
<td>Fax: +49 5223 / 969-130</td>
</tr>
<tr>
<td>Fax: +49 2162 / 1033679</td>
<td>tgeissler@bopla.de</td>
<td>awerries@bopla.de</td>
</tr>
<tr>
<td>Matthias Edinger</td>
<td>Sales area West-South</td>
<td>Ralf Massmann</td>
</tr>
<tr>
<td>Mobile: +49 173 / 7276463</td>
<td>Postcode 35, 53-57, 60-69, 76700-76999</td>
<td>Tel.: +49 5223 / 969-142</td>
</tr>
<tr>
<td>Tel.: +49 6753 / 964208</td>
<td>Fax: +49 6753 / 964245</td>
<td>Fax: +49 5223 / 969-130</td>
</tr>
<tr>
<td>Fax: +49 6753 / 964245</td>
<td>medinger@bopla.de</td>
<td>rmassmann@bopla.de</td>
</tr>
<tr>
<td>Rainer Nottberg</td>
<td>Sales area North-West</td>
<td>Regina ReesIng</td>
</tr>
<tr>
<td>Mobile: +49 173 / 7276479</td>
<td>Postcode 26, 33, 44, 45, 48, 49, 59</td>
<td>Tel.: +49 5223 / 969-133</td>
</tr>
<tr>
<td>Tel.: +49 5936 / 8345485</td>
<td>Fax: +49 5936 / 9345486</td>
<td>Fax: +49 5223 / 969-130</td>
</tr>
<tr>
<td>Fax: +49 5936 / 9345486</td>
<td>rnottberg@bopla.de</td>
<td>rreesing@bopla.de</td>
</tr>
<tr>
<td>Karin Heller</td>
<td>Sales area South-East</td>
<td>Heike Buchholz</td>
</tr>
<tr>
<td>Mobile: +49 173 / 7276460</td>
<td>Postcode 80-89, 94</td>
<td>Tel.: +49 5223 / 969-150</td>
</tr>
<tr>
<td>Tel.: +49 8861 / 254782</td>
<td>Fax: +49 8861 / 254783</td>
<td>Fax: +49 5223 / 969-130</td>
</tr>
<tr>
<td>Fax: +49 8861 / 254783</td>
<td>kheller@bopla.de</td>
<td>hbuchholz@bopla.de</td>
</tr>
<tr>
<td>Robert Waldau</td>
<td>Sales area Middle-South</td>
<td>Irene Weis</td>
</tr>
<tr>
<td>Mobile: +49 173 / 7276466</td>
<td>Postcode 07, 08, 74, 90-93, 95-98</td>
<td>Tel.: +49 5223 / 969-145</td>
</tr>
<tr>
<td>Tel.: +49 9101 / 6516</td>
<td>Fax: +49 9101 / 997355</td>
<td>Fax: +49 5223 / 969-130</td>
</tr>
<tr>
<td>Fax: +49 9101 / 997355</td>
<td>rwaldau@bopla.de</td>
<td>iweis@bopla.de</td>
</tr>
<tr>
<td>Udo Metzulat</td>
<td>Sales area South-West</td>
<td>Christopher Etienne</td>
</tr>
<tr>
<td>Mobile: +49 173 / 7276462</td>
<td>Postcode 70-73, 75, 76000-76699, 77-79</td>
<td>Tel.: +49 5223 / 969-174</td>
</tr>
<tr>
<td>Tel.: +49 7159 / 933925</td>
<td>Fax: +49 7159 / 933926</td>
<td>Fax: +49 5223 / 969-130</td>
</tr>
<tr>
<td>Fax: +49 7159 / 933926</td>
<td>umetzulat@bopla.de</td>
<td>celtienne@bopla.de</td>
</tr>
</tbody>
</table>
Field staff

Thomas Lüke
Mobile: +49 173 / 5755400
Tel.: +49 5223 / 969-137
Fax: +49 5223 / 969-200
tluke@bopla.de

Nikolai Wilke
Mobile: +49 173 / 7276476
Tel.: +49 5223 / 969-169
Fax: +49 5223 / 969-496169
nwilke@bopla.de

Thomas Funke
Mobile: +49 173 / 7276405
Tel.: +49 5223 / 969-212
Fax: +49 5223 / 969-496212
tfunke@bopla.de

Olaf Kleineberg
Mobile: +49 173 / 7276474
Tel.: +49 5223 / 969-221
Fax: +49 5223 / 969-496221
okleineberg@bopla.de

Sales management

Silvia Spilker
Tel.: +49 5223 / 969-138
Fax: +49 5223 / 969-200
sspliker@bopla.de

Sales area input units

Joachim Niermann
Tel.: +49 5223 / 969-166
Fax: +49 5223 / 969-496169
jniermann@bopla.de

Sales area electronics services

Jürgen Hagemann
Tel.: +49 5223 / 969-213
Fax: +49 5223 / 969-496213
jhagemann@bopla.de

19°-technology

Axel Germann
Tel.: +49 5223 / 969-163
Fax: +49 5223 / 969-496163
agermann@bopla.de
BOPLA sales organisation international

Australia
Phoenix Mecano Australia Pty Ltd
64 Butler Way,
Tullamarine, Vic, 3043
Tel. +03 9338 5699
Fax +03 9338 5399
Mobil 0400 055 124
info@phoenix-mecano.com.au
www.phoenix-mecano.com.au

Rubin Group Pty Ltd,
52 Whiting Street, P.O. Box 82
1570 Artarmon, NSW
Tel. +61 2 / 94 93 23 33
Fax +61 2 / 94 39 22 78
admin@rubin.com.au
www.rubin.com.au

Austria
AVIS-Phoenix Mecano GmbH
Birostr. 17
1232 Vienna
Tel. +43 (0) 1 / 6 15 08 01
Fax +43 (0) 1 / 6 15 08 01-130
info@avis-phoenix.at
www.avis-phoenix.co.at

Belarus
Ex-Con-East GmbH
Agathe-Zeis-Str. 6
D-01454 Radeberg
Tel. +49 (0) 3528 / 41500
Fax +49 (0) 3528 / 415050
info@ex-con-east.com
www.ex-con-east.com

Belgium
PM Komponenten N.V.
Korewegstraat 124
9800 Deinze
Tel. +32 (0) 9 / 2 20 70 50
Fax +32 (0) 9 / 2 20 72 50
info@pm.be@phoenix-mecano.com
www.pm.be

Brazil
Phoenix Mecano
Comercial e Tecnica Ltda.
Av. Pres. Alceu Maynard de Araujo, 185
04726 180 Sao Paulo
Tel. +55 (0) 11 / 56 40 882
Fax +55 (0) 11 / 56 43 2201
vendas@phoenix-mecano.com.br
www.phoenix-mecano.com.br

Bulgaria
Comet Electronics
47, Obolinka Str., Dzhezba-2
1582 Sofia
Tel. +359 (2) / 9 15 58 35
Fax +359 (2) / 873 92 000
office@comet.bg
www.comet.bg

Bulgaria
PM Consulting Ltd.
Bulgaria ap. 15 Kiri I Metodii Str
1202 Sofia
Tel. +359 (2) / 983 57 12
Fax +359 (2) / 688 401 440
office@pmcbg.eu
www.pmcbg.eu

Czech Republic
ELING BOHEMIA, s.r.o.
PO Box 33 Nadrahaech 814
68004 Kunovice
Tel. +42 (0) 572 / 54 99 35
Tel. +42 (0) 572 / 54 90 47
eling@eling.cz
www.eling.cz

China
Mecano Components (Shanghai) Co. Ltd.
No. 1001, JiaDian Road, Nanxiang Hi-tech
Park, Jiading District
201802 Shanghai
Tel. +86 21 / 69 17 65 32
Fax +86 21 / 69 17 65 32
info@mecano.com.cn
www.mecano.com.cn

Croatica
Piletic d.o.o.
K aptolaska 39
10000 Zagreb
Tel. +385 (1) / 30 14 – 4 05
Tel. +385 (1) / 36 39 – 3 99
piletic@zg.hnet.hr
www.piletic.hr

Denmark
Phoenix Mecano Aps / Division BOPLA
(as of 01.01.2012)
Ellegårdvej 36
DK-6400 Sønderborg
Tel. +45 70 02 02 09
bopla-info@phoenix-mecano.dk
www.phoenix-mecano.dk

Finland
SKS Automaatio Oy
Martinkyläntie 50
01721 Vantaa
Tel. +358 20 / 76 47 600
Fax +358 20 / 76 47 649
automaatio@sksk.fi
www.skks.fi

France
Phoenix Mecano
76, Rue du Bois Galon-B.P.3
94121 Fontenay sous Bois, Cedex
Tel. +33 (0) 1 / 53 99 50 50
Fax +33 (0) 1 / 53 99 50 76
info.pmf@phoenix-mecano.com
www.phoenix-mecano.fr

Greece
Dimoulas special cables S.A.
100-102 Lanaxon Str.
10444 Athens
Tel. +30 210 / 5157610
Fax +30 210 / 5157611
info@dimoulas.gr
www.dimoulas.gr

Great Britain
BOPLA Enclosures Phoenix Mecano Ltd
Unit 26 Faraday Road
HP19 8RY Aylesbury Buckinghamshire
Tel. +44 (0) 12 96 / 611 660
Fax +44 (0) 12 96 / 46 82 96
boplaqliq@phoenix-mecano.com
www.bopla-enclosures.co.uk

Hungary
Phoenix Mecano Kecskemet Kft.
Szent Istvan
Király Krt. 24
H6800 Kecskemét
Tel. +36 (0) 78 / 5 15 – 500
Fax +36 (0) 78 / 414 – 560
info@phoenix-mecano.hu
www.phoenix-mecano.hu

India
Phoenix Mecano (India) Ltd.
388-389, Pirangoot Indl. Area Pirangoot
Hipewadi Road Village Bhare, Taluka
Mulshi
412 106 Dist Pune
Tel. +91 20 6674 5000
Fax +91 20 2292 9205
admin@bopipl-online.com
www.phoenix-mecano.co.in

Ireland
Reg Farrell Engineering Ltd
Unit 19, Oak Road Business Park Western
Industrial Estate
Dublin
Tel. +353 (0) 1 / 4 65 90 10
Fax +353 (0) 1 / 4 65 90 11
info@rfe.ie
www.rfe.ie

Israel
I.C.P.C.
P.O. Box 119
42140 Netanya
Tel. +972 (0) 9 / 8 65 65 66
Fax +972 (0) 9 / 8 65 65 67
sales@icpc.co.il
www.icpc.co.il

Italy
Phoenix Mecano S.R.L.
Prol. Via G. Di Vittorio 11
20065 Inzago (Milan)
Tel. +39 (0) 2 / 953 15 260
Fax +39 (0) 2 / 953 10 539
pmi-enclosure.sales@phoenix-mecano.com
www.phoenix-mecano.it

Kazakhstan
Ryspek Myrzakhmetov
Microdistrict 6
050006 Almaaty
Tel. 8 777 2030 174
kazakhstan@ex-con-east.kz
www.ex-con-east.com

Krygystan
Ex-Con-East GmbH
Jibek Jolu 326
720070 Bishkek
Tel. +99 3528 4150 0
Fax +99 3528 4150 50
info@ex-con-east.com
www.ex-con-east.com

Korea (South Korea)
Phoenix Mecano Korea Co. Ltd
2020 ho, Daesin Acrolle C-dong,
Dogok-2 dong, Kangnam-gu
139371 Seoul
Tel. +82/2/236 376 922
Fax +82/2/236 376 925
info@pmecano.co.kr
www.pmeceano.com

Phoenix Mecano Korea Co., Ltd
#304, Gyoungmu Building,
675-5, Jeonpo-Dong,
Busanjin-Gu, Busan,
Korea 614-667
Tel. (82-5) 15176924
Fax (82-5) 15176925
info@pmecano.co.kr
www.pmeceano.com

New Zealand
Captron Electronics Limited
PO Box 15299 New Lynn
Auckland
Tel. +64 9/328 1499
Fax +64 9/328 1185
sales@captron.co.nz
www.captron.co.nz
Distributors Germany

<table>
<thead>
<tr>
<th>Distributor</th>
<th>Address</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beck Kabel- und Gehäusetechnik GmbH</td>
<td>Bärenfelsallee 20 · 17121 Loitz / Rustow</td>
<td>Tel.: +49 (0) 039998 / 31120 Fax: +49 (0) 039998 / 31128 info@beck-elektronik.de www.beck-kabelkonfektion.de</td>
</tr>
<tr>
<td>Conrad Electronic</td>
<td>Klaus-Conrad-Straße 2 · 92533 Wernberg</td>
<td>Tel.: +49 (0) 09604 / 408988 Fax: +49 (0) 09604 / 408936 businessbetreuung@conrad.biz www.conrad.biz</td>
</tr>
<tr>
<td>EVE GmbH</td>
<td>Hollefeldstraße 16 · 48282 Emsdetten</td>
<td>Tel.: +49 (0) 02572 / 93510 Fax: +49 (0) 02572 / 935124 info@eve.de www.eve.de</td>
</tr>
<tr>
<td>Beck Kabel- und Gehäusetechnik GmbH</td>
<td>Sybelsstraße 1 · 90461 Nürnberg</td>
<td>Tel.: +49 (0) 0911 / 4749620 Fax: +49 (0) 0911 / 4749628 info@beck-elektronik.de www.beck-kabelkonfektion.de</td>
</tr>
<tr>
<td>Damm & Johanning GmbH & Co KG</td>
<td>Sudbrackstraße 46-48 · 33611 Bielefeld</td>
<td>Tel.: +49 (0) 0521 / 800050 Fax: +49 (0) 0521 / 8000529/-27 info@duj.de · www.duj.de</td>
</tr>
<tr>
<td>Farnell Electronic Components GmbH</td>
<td>Ketenring 14 · 82041 Oberhaching</td>
<td>Tel.: +49 (0) 089 / 61393939 Fax: +49 (0) 089 / 6135901 verkauf@farnell.com · www.farnell.de</td>
</tr>
<tr>
<td>Börsig GmbH</td>
<td>74172 Neckarsulm</td>
<td>Tel.: +49 (0) 07132 / 93930 Fax: +49 (0) 07132 / 939393 info@boersig.com · www.boersig.com</td>
</tr>
<tr>
<td>Distrelec Schuricht GmbH</td>
<td>Lise-Meitner-Straße 4 · 28359 Bremen</td>
<td>Tel.: +49 (0) 01805 / 223435 Fax: +49 (0) 01805 / 223436 scc@distrelec.de · www.distrelec.de</td>
</tr>
<tr>
<td>Fritz Peres GmbH</td>
<td>Köhlstraße 14 · 50827 Cologne</td>
<td>Tel.: +49 (0) 0221 / 9564030 Fax: +49 (0) 0221 / 594008 info@peres.de · www.peres.de</td>
</tr>
<tr>
<td>Börsig GmbH Vertriebsbüro Sachsen</td>
<td>Halsbrücker Str. 31a · 09599 Freiberg</td>
<td>Tel.: +49 (0) 03731 / 20010 Fax: +49 (0) 03731 / 200119 info@boersig.com · www.boersig.com</td>
</tr>
<tr>
<td>elcon electronic GmbH</td>
<td>Gerhard-Gerdes-Straße 9 · 37079 Göttingen</td>
<td>Tel.: +49 (0) 0551 / 694000 Fax: +49 (0) 0551 / 6940023 verkauf@elcon-electronic.de www.elcon-electronic.de</td>
</tr>
<tr>
<td>RS COMPONENTS GmbH</td>
<td>Hessenring 13b · 64546 Mörfelden-Walldorf</td>
<td>Tel.: +49 (0) 06105 / 401234 Fax: +49 (0) 06105 / 401100 bestellung@rsonline.de www.rsonline.de</td>
</tr>
<tr>
<td>Bürklin OHG</td>
<td>Grünwalder Weg 30 · 82041 Oberhaching</td>
<td>Tel.: +49 (0) 089 / 55875110 Fax: +49 (0) 089 / 55875421 info@buerklin.de · www.buerklin.com</td>
</tr>
<tr>
<td>ELTOP GmbH</td>
<td>Robert-Bosch-Straße 8 · 30989 Gehrden</td>
<td>Tel.: +49 (0) 05108 / 927320 Fax: +49 (0) 05108 / 927321 eltop@eltop.de · www.eltop.de</td>
</tr>
<tr>
<td>Schukat Electronic Vertriebs GmbH</td>
<td>Daimlerstraße 26 · 40789 Monheim a. Rhein</td>
<td>Tel.: +49 (0) 02173 / 950710 Fax: +49 (0) 02173 / 950719 info@schukat.com · www.schukat.com</td>
</tr>
<tr>
<td>Reichelt Elektronik</td>
<td>Elektronikring 1 · 26452 Sande</td>
<td>Tel.: +49 (0) 04422 / 955333 Fax: +49 (0) 04422 / 955111 shop@reichelt.de · www.reichelt.de</td>
</tr>
</tbody>
</table>